Droites, inéquations et tableaux de signes : graphique annexe 1 et tableau de valeurs annexe 2

- 1. La droite $d_1: y = \frac{1}{2}x \frac{3}{2}$ est tracée sur **l'annexe 1.** Utiliser ce graphique pour dresser le tableau de signes de $y = \frac{1}{2}x - \frac{3}{2}$.
- 2. On considère la droite d_2 dont l'équation est : $y = -\frac{2}{3}x + 4$.

Compléter le tableau de valeurs de l'annexe 2.

Tracer cette droite d_2 dans le repère de l'annexe 1.

Résoudre, par le calcul, l'inéquation : $-\frac{2}{3}x + 4 \le 0$

Dresser le tableau de signes de $y = -\frac{2}{3}x + 4$

- 3. Dresser le tableau de signes du produit $P(x) = \left(\frac{1}{2}x \frac{3}{2}\right)\left(-\frac{2}{3}x + 4\right)$
- **4.** Utiliser le **3.** pour donner l'intervalle S sur lequel on a : P(x) > 0.

Résoudre et donner les solutions sous forme d'intervalles

$$-\frac{2}{3}x + 1 < x \qquad \frac{1}{2}x - 4 \ge 2(3 - x) \qquad \frac{x - 5}{3} > 1 + 3x \qquad 3x - 5 \le \frac{x + 2}{2}$$

Vecteurs et parallélogrammes : Figure annexe 3

ABCD est un parallélogramme de centre I.

1. VRAI ou FAUX:

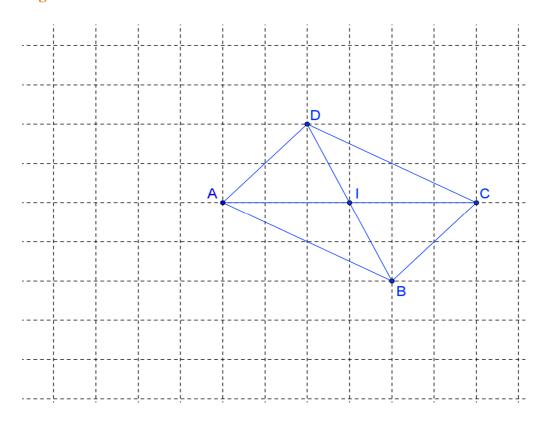
Pour chaque égalité proposée, cocher la case qui vous semble juste (égalité vraie ou égalité fausse) Une réponse juste est comptée +0,5; une réponse fausse est comptée -0,5. Une ligne sans réponse ne rapporte, ni n'enlève rien.


	Egalités	Vrai	Faux
1	$\overrightarrow{BD} = \overrightarrow{AC}$		
2	$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{0}$		
3	$\overrightarrow{IA} = \overrightarrow{IC}$		
4	$\overrightarrow{IB} = \overrightarrow{DI}$		
5	$\overrightarrow{AI} = 2\overrightarrow{AC}$		
6	$\overrightarrow{DB} = 2\overrightarrow{IB}$		
7	$\overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{CD}$		
8	$\overrightarrow{DA} - \overrightarrow{AC} = \overrightarrow{DC}$		
9	$\overrightarrow{AD} - \overrightarrow{AC} = \overrightarrow{BA}$		
10	$\overrightarrow{CD} + \overrightarrow{CB} = 2\overrightarrow{IA}$		

- 2. Calculer $\overrightarrow{AB} + \overrightarrow{CD}$
- 3. Montrer que : $\overrightarrow{IC} \overrightarrow{ID} = \overrightarrow{AB}$
- **4.** Montrer que : $\overrightarrow{BD} + \overrightarrow{AC} = 2\overrightarrow{BC}$

Le point J est tel que le quadrilatère AJBI soit un parallélogramme.

- 5. Placer le point J (annexe 3)
- **6.** Montrer que : $\overrightarrow{BJ} = \overrightarrow{CI}$ et que $\overrightarrow{JI} = \overrightarrow{BC}$
- 7. Montrer que : $\overrightarrow{BD} + \overrightarrow{AC} = 2\overrightarrow{II}$


Annexe 1 : Graphique d_1 et d_2

Annexe 2 : Tableau de valeurs droite d_2

Points	A	В	С	D	Е
х	-3	0	6	9	
у					8

Annexe 3 : Figure

