Suites adjacentes:

1. COURS

- a. Donner la définition précise de deux suites adjacentes.
- b. Démontrer que deux suites adjacentes sont convergentes et ont la même limite.
- c. Illustrer schématiquement, sur un axe, deux suites adjacentes et leur limite commune ι
- 2. Les suites suivantes sont-elles adjacentes ? Expliquer.

a.
$$u_n = \ln \left(2 - \frac{3}{n}\right)$$
 et $v_n = \ln \left(3 + \frac{2}{n}\right)$ pour $n \ge 1$

b.
$$u_n = 1 - 10^{-n}$$
 et $v_n = 1 + 10^{-n}$ pour $n \ge 1$

Complexes:

1. COURS

Soient les points $\Omega(\omega)$, M(z) et M'(z').

Il s'agit de traduire, en utilisant les affixes ω , z et z', que le point M' est l'image de M par une rotation de centre Ω et d'angle θ .

Justifier et illustrer par un schéma.

2. Résoudre, en donnant les solutions sous forme algébrique, l'équation :

$$z^2 - 4\sqrt{3}z + 16 = 0$$

- 3. Soient A et B les points d'affixes respectives $a = 2\sqrt{3} 2i$ et $b = 2\sqrt{3} + 2i$.
 - a. Ecrire a et b sous forme exponentielle.
 - b. Faire une figure et placer exactement A et B en gardant les traits de construction.
 - c. Montrer que le triangle OAB est équilatéral direct
- **4.** Soit C le point d'affixe c = -8i.

Soit D l'image de C par la rotation de centre O et d'angle $\frac{2\pi}{3}$.

Placer C et D sur la figure.

Montrer que l'affixe du point D est $d = 4\sqrt{3} + 4i$.

5. Montrer que D est l'image de B par une homothétie de centre O dont on donnera le rapport.