Exercices complexes Bac

10 Nouvelle-Calédonie novembre 2010

Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) d'unité graphique 2 cm.

On considère les points A, B et C d'affixes respectives

$$z_{\rm A} = -2i$$
, $z_{\rm B} = -\sqrt{3} + i$ et $z_{\rm C} = \sqrt{3} + i$.

- **1. a.** Écrire z_A , z_B et z_C sous forme exponentielle.
 - **b.** En déduire le centre et le rayon du cercle Γ passant par les points A, B et C.
 - c. Faire une figure et placer le point A, tracer le cercle Γ puis placer les points B et C.
- 2. a. Écrire le quotient $\frac{z_{\rm B} z_{\rm A}}{z_{\rm C} z_{\rm A}}$ sous forme algébrique puis sous forme exponentielle.
 - b. En déduire la nature du triangle ABC.
- **3.** On note *r* la rotation de centre A et d'angle mesurant $\frac{\pi}{3}$ radians.
 - **a.** Montrer que le point O', image de O par *r*, a pour affixe $-\sqrt{3}$ i.
 - b. Démontrer que les points C et O' sont diamétralement opposés sur le cercle Γ .
 - **c.** Tracer l'image Γ' du cercle Γ par la rotation r.
 - **d.** Justifier que les cercles Γ et Γ' se coupent en A et B.
- 4. a. Déterminer l'ensemble (*E*) des points *M* d'affixe *z* tels que

 $|z| = |z + \sqrt{3} + \mathbf{i}|.$

b. Montrer que les points A et B appartiennent à (*E*).

8 Amérique du Nord mai 2011

Le plan complexe est rapporté à un repère orthonormal direct (O, \vec{u}, \vec{v}) . On considère les points A et B d'affixes respectives : a = i et b = 1 + i. On note : r_A la rotation de centre A, d'angle $\frac{\pi}{2}$, r_B la rotation de centre B, d'angle $\frac{\pi}{2}$ et r_O la rotation de centre O, d'angle $-\frac{\pi}{2}$.

Partie A

On considère le point C d'affixe c = 3i. On appelle D l'image de C par r_A , G l'image de D par r_B et H l'image de C par r_O . On note d, g et h les affixes respectives des points D, G et H.

- 1. Démontrer que d = -2 + i.
- **2.** Déterminer *g* et *h*.
- 3. Démontrer que le quadrilatère CDGH est un rectangle.

Partie B

On considère un point *M*, distinct de O et de A, d'affixe *m*. On appelle *N* l'image de *M* par r_A , *P* l'image de *N* par r_B et *Q* l'image de *M* par r_O . On note *n*, *p* et *q* les affixes respectives des points *N*, *P* et *Q*.

- **1.** Montrer que n = im + 1 + i. On admettra que p = -m + 1 + i et q = -im.
- 2. Montrer que le quadrilatère MNPQ est un parallélogramme.

3. **a.** Montrer l'égalité :
$$\frac{m-n}{p-n} = i + \frac{1}{m}$$
.

b. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Déterminer l'ensemble (Γ) des points M tels que le quadrilatère MNPQ soit un rectangle.