Exercice 4: 5 points

Une seule bonne réponse pour chaque question – Cocher la case correspondante Il est conseillé d'utiliser un brouillon

• 1 bonne réponse : 0,5 point

ullet 1 réponse fausse ou ambiguë : -0,25 point

• pas de réponse : 0 point

1	L'équation $z^2 - 2z + 4 = 0 \dots$	n'a aucune solution	a pour solution $z = 2$	a pour solutions $z_1 = 1 + i\sqrt{3}$ et $z_2 = 1 - i\sqrt{3}$
2	Si $z = \frac{2}{1+i\sqrt{3}}$ alors	z = 2	$Re(z) = \frac{1}{2}$	$z = 2 - i\sqrt{3}$
3	Une solution de l'équation $2z + \overline{z} = 9 + i$ est	3 + <i>i</i>	3	i
4	Si $z = i + \sqrt{3}$ alors	$\overline{z} = i - \sqrt{3}$	z = 4	M(z) est sur le cercle de centre O, de rayon 2
5	$z + \overline{z} = 0$ équivaut à	z est imaginaire pur	z est réel	z = 0
6	Si $z = \frac{5}{2+i}$ alors	$\overline{z} = 2 - i$	$\overline{z} = 2 + i$	$\overline{z} = \frac{-5}{2-i}$
7	Si $z = \frac{i}{\sqrt{3}-i}$ alors	$\arg(z) = \frac{\pi}{3}$	$\arg(z) = \frac{2\pi}{3}$	$\arg(z) = -\frac{\pi}{3}$
8	$Z = z^2 - 2\overline{z} + 1$ L'ensemble des points $M(z)$ tels que Z soit réel	est l'axe réel et l'axe imaginaire	est l'axe imaginaire et la droite $x=-1$	est l'axe réel et la droite $x = -1$
9	Si $z = 1 - i$ alors	$\arg(z^{2010}) = -\frac{\pi}{2}$	$\arg(z^{2010}) = \frac{\pi}{2}$	$\arg(z^{2010}) = 0$
10	L'équation $\frac{z}{1+z} = 2i \text{ a pour solution } \dots$	z = 2i - 4	$z = 4 + \frac{2}{5}i$	z = -0.8 + 0.4i